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LE'ITER TO THE EDITOR 

On Polya random walks, lattice Green functions, and the 
bond percolation threshold 

Muhammad Sahimi, Barry D Hughes, L E Scriven and H Ted Davis 
Department of Chemical Engineering and Materials Science, University of Minnesota, 
Minneapolis, MN 55455, USA 

Received 25 August 1982 

Abstract. Based on numerical evidence, we conjecture a connection between the bond 
percolation threshold of Bravais lattices in three or more dimensions and the value at the 
origin of a lattice Green function related to the probability of return to the origin for a 
P6lya random walk. 

Percolation theory has become a powerful, much-used tool of physics. Its popularity 
stems from its potential applications to a variety of fields, and from the fact that 
despite the simplicity of its underlying concepts, it leads to non-trivial critical 
phenomena. (For recent reviews see Essam (1980) and Stauffer (1979).) Despite 
extensive study, few exact results have been obtained for the most interesting quantities 
in percolation theory. In particular, the catalogue of exact results concerning the 
bond and site percolation thresholds p :  and p :  has few entries. For the one- 
dimensional lattice (the linear chain) it is known trivially that p :  = p :  = 1, while for 
a Bethe lattice (Cayley tree) of coordination number z ,  Fisher and Essam (1961) have 
shown that p :  = p s  = l / (z  - 1). (Fisher and Essam have also derived exact thresholds 
for some other pseudolattices related to the Bethe lattice.) By a not entirely rigorous 
argument, Sykes and Essam (1964) derived the bond percolation thresholds p :  for 
three two-dimensional lattices: hexagonal, 1 - 2 sin(.rr/l8); triangular, 2 sin(.rr/l8); 
square, 1/2. Their arguments have subsequently been made completely rigorous by 
Kesten (1980) and Wierman (1981). Sykes and Essam also give two exact site 
percolation thresholds: triangular, 1/2; KagomC, 1 - 2 sin .rr/18. 

The work of Kasteleyn and Fortuin (1969) and Fortuin and Kasteleyn (1972) 
establishes that the bond percolation problem is the q + 1 limit of the q-state Potts 
model; a simpler derivation of this result has been given by Wu (1978). It is therefore 
not surprising that exact results on p s  and p:, and presumably exact results on critical 
exponents for percolation properties (den Nijs 1979, Nienhuis et a1 1980, Pearson 
1980), are available only for the linear chain, the Bethe lattice and two-dimensional 
lattices. A few rigorous inequalities involving p :  and p :  are available. One of these 
relates percolation processes to self-avoiding walks : 

p s  a p :  a 1/p (1) 
(Broadbent and Hammersley 1957). Here p = e" denotes the connective constant of 
the lattice, and if C, is the number of self-avoiding walks of n steps, K = 
limn-.co ( l / n )  In C, (Hammersley 1957a). For a lattice with coordination number z at 
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each site, p s z - 1, so that equation (1) implies the simpler, but weaker, inequality 

(2) 

apart from the Bethe lattice the inequalities are believed to be strict. 
Numerical values of p :  and p :  can be determined by a variety of means, the 

degree of precision being of course limited by constraints of computational cost. Some 
estimates of p :  are collected in tables 1 and 2, as discussed below. Both physically 
motivated and empirical approximate formulae are available. A single-bond effective 
medium approximation (Kirkpatrick 1973) gives 

B p :  2 p c  2 l / ( z  - 1); 

pc" = 2 / z  (3) 
for a lattice of coordination number z, irrespective of dimension. In two dimensions, 
this approximation is excellent, being exact for the square lattice and in small error 
for the triangular and hexagonal lattices. By refining the effective medium approach, 
Turban (1978) has reproduced the known exact values of pc" for the triangular and 
hexagonal lattices. Accurate approximations in dimensions higher than two are harder 
to obtain. Vyssotsky et af (1961) note in particular that 

(4) 

(with d the dimension) is excellent ford = 2 and fairly good for d = 3. Any approxima- 
tion for p :  must be consistent with the limiting behaviour 

pc" = d / ( d  - 1)z 

Pc" 3 l / ( z  - 11, Pc" - l / ( z  - 1) asd+co.  ( 5 )  

Recently, the authors noticed that a certain quantity gives values very close to the 
numerical predictions of pc" for Bravais lattices in three or more dimensions. With 
{ i }  denoting the set of nearest neighbours of site i, a lattice Green function Gi can 
be defined as the unique solution of the equation (Sahimi et af 1982) 

which decays to zero as the distance of site i from the origin increases. (Such a solution 
exists only in three or higher dimensions.) Our observation is that 

(7) 
in three or more dimensions. We conjecture that this result may in fact be exact, 
based on numerical evidence discussed below. The quantity Go can frequently be 
found from Fourier analysis. In particular, if sites of the lattice can be mapped onto 
a d-dimensional sublattice of the d-dimensional hypercubic lattice Zd then 

B 
p c  =GO 

where 

is the structure function of the lattice. Integrals of the form (8) figure prominently in 
the theory of lattice random walks (Montroll 1956). In particular, 

R = 1 - {zGo}-' (10) 
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is the probability of eventual return to the origin of a Pblya (unbiased, nearest- 
neighbour stepping) random walk. Thus, the expression (7) is equivalent to 

p: =l /z ( l - -R) .  

Since R > l / z  and R + l / z  from above with increasing dimension, the right-hand 
side of (11) has the correct limiting behaviour ( 5 )  as d + 00. 

In table 1, we collect various numerical evaluations and approximations for p: 
for three-dimensional Bravais lattices. It can be seen from this table that the approxi- 
mation p: = Go is excellent and far superior to the effective medium approximation 
(3) and the empirical formula (4). In table 2, we examine the performance of the 
various approximations for simple cubic lattices of dimension d, with 3 s d s 7. The 
approximation p! =GO is again excellent. In general, our expression for p !  agrees 
best with numerical values derived from series expansions. We point out that the 
stated errors for numerical values of p: represent the degree of confidence in the 
values, not rigorous bounds on the values. 

Table 1. Approximations to the bond percolation threshold p :  for three-dimensional 
Bravais lattices. The sources for the numerical estimates are: "Sykes et a1 (1976), 

Nakanishi and Stanley (1981), 
e Dunn et al (1975), Cox and Essam (1976), via pair-connectedness. It has been shown 
by Ishioka and Koiwa (1978) that the probability of return to the origin for a P6lya 
random walker is the same for the face-centred cubic and hexagonal close-packed lattices. 

Vyssotsky er a1 (1961), Kirkpatrick (1979, p 339), 

Analytic approximations Numerical estimates 
Lattice EMA (2/2) d/[(d - 1)Z] Go Series expansions Monte Carlo 

Simple cubic 0.333 33 0.250 00 0.252 73 0.247f0.003' 0.2495i0.0005' 
0.254f0.013b 
0.25 f ? d  

Body-centred 0.250 00 0.187 50 0.174 15 0.1785~0.0028 - 
cubic 
Face-centred 0.166 67 0.125 00 0.112 06 0.119i0.001' 0.125+0.005b 
cubic 0.119 f 0,0005' 

Hexagonal 0.166 67 0.125 00 0.11206 - 0.124 f O.OOSb 
close-packed 

0.1185 f ? f  

Table 2. Approximation to the bond percolation threshold p :  for d-dimensional simple 
cubic lattices. The numerical estimates are from a combination of all sources in table 1; 

Gaunt and Ruskin (1978); Kirkpatrick (1979, p 339). For d 24,  Go is evaluated using 
(8) and the asymptotic expansion for R derived by Montroll(1956). 

d l / ( z  - 1) d / [ (d - l ) z l  Go Numerical estimates 
~~ 

3 0.2000 0.250 0.252 73 0.25i? '  
4 0.1429 0.1667 0.156 0.161 fO.0015 

0.1435 ~ 0 . 0 0 1 '  
5 0.1111 0.1250 0.115 0.1 18 f 0.001 
6 0.0909 0.1000 0.093 0.094i0.0005 
7 0.0769 0.0833 0.078 0.078*0.0002 
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We have no theoretical argument to support the conjecture that p," = Go for d 3 3, 
or to explain, if the conjecture is not correct, why the approximation is so good. 
However, since the lattice Green function Gi contains information on the topological 
structure of the lattice, the possibility that it is related in some manner to quantities 
of percolation theory might be anticipated. The relation pc" = GO is not here conjec- 
tured to hold for arbitrary periodic lattices, but only for Bravais lattices in three or 
more dimensions. For the diamond lattice, which is not a Bravais lattice, Go -- 0.44822 
(Ishioka and Koiwa 1978), while numerical determinations of p," by Sykes et a1 (1976) 
and Vyssotsky et a1 (1961) yield the values 0.388k0.005 and 0.390*0.011 respec- 
tively. 

An attempt to relate site percolation thresholds p :  to random walk statistics has 
been made by Ishioka and Koiwa (1978). They observe from numerical evidence that 
for periodic lattices of dimension greater than 3, 

p 2 s R ;  (12) 

equality in this expression holds for the Bethe lattice (Hughes and Sahimi 1982). 
However, the heuristic argument Ishioka and Koiwa present in support of (12), based 
on the mean number S ,  of distinct sites visited in an n-step P6lya walk having the 
asymptotic behaviour S ,  - n/{zGo}, is not entirely convincing. The Ishioka-Koiwa 
inequality (12) and our expression (11) suggest that the possible connections of 
percolation theory to Markovian random walks may prove more fruitful than better- 
known connections to self-avoiding walks. Further support for this is provided by 
work of Mauldon (1961), Wu and Stanley (1982) and Reich and Leath (1978). By 
treating the percolation problem as a Markov process, Mauldon obtained a very strong 
lower bound for the bond percolation threshold of a fully directed square lattice. His 
result (p ," 3 0.6297) compares very well with the value pc" = 0.643 f 0.002 found by 
Blease (1977) using series expansions. In contrast, Hammersley (1975b) used the 
better known (non-Markovian) self-avoiding walk connection, obtaining the much 
weaker lower bound of 0.59697. Wu and Stanley established an exact correspondence 
between Markovian random walks and a class of directed percolation problems. Reich 
and Leath studied high-density percolation on a Bethe lattice, i.e. a percolation 
problem in which only those occupied sites which have at least m nearest-neighbour 
sites occupied are considered active. They derived the percolation threshold for such 
a system for arbitrary m using a Markov random walk argument. 

There is a curious connection between our result (7) and the spherical model. Let 
Tc(q) denote the dimensionless critical temperature of the q-state Potts model. Then 
the Fortuin-Kasteleyn relation (Wu 1978) links'pc" to Tc(l+) = limq+l Tc(q): 

p," = 1 -exp(-I/Tc(l+)).  (13) 

Equation (7) therefore leads to an expression for Tc(l+) in terms of Go. On the other 
hand, the spherical approximation (Berlin and Kac 1952, Joyce 1972) applied to the 
two-state Potts model, i.e. the Ising model, gives T , ( ~ ) - ( Z G ~ ) - ~ ,  where i is the 
coordination number of the lattice. This approximation is useful only in three or more 
dimensions, and improves with increasing z ; however, it does establish an approximate 
relation between Tc(2) and GO. The interesting possibility arises that an approximation 
in terms of GO might be able to be found for TJq)  for general q in three or more 
dimensions. 
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We have found no expression analogous to (7) for the site percolation threshold. 

(14) 

is very good for simple cubic lattices of dimension d 3 3, the greatest error being 
about three per cent at d = 3, 

However, we note that the empirical formula 

p :  = d / ( 2 d  - l)(d - 1) 

We thank Dr M Koiwa, Dr S Ishioka and Mr W Th F den Hollander for stimulating 
discussions, and the referee for drawing our attention to the possible link between 
our conjecture and the spherical model. This work was supported by the US Depart- 
ment of Energy. 
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